Wednesday, October 20, 1999

Evolusi Scope Default di Visual Basic

Versi VBTahun RilisDefault Scope Sub/FunctionKeterangan
VB 3.0 93 Public Setiap Sub/Function dianggap bisa diakses dari luar modul/form. Developer harus eksplisit menulis Private jika ingin membatasi.
VB 4.0 95 Private Mulai ada transisi ke object-oriented thinking. Event-handler form otomatis Private agar tidak sembarangan dipanggil dari luar. Kalau mau diakses lintas modul, harus deklarasi Public.
VB 5.0 97 Private Scope lebih konsisten: semua Sub/Function default Private. Developer dituntut disiplin dengan deklarasi scope.
VB 6.0 98 Private Final version klasik VB. Tetap default Private, tapi mendukung Public untuk expose API (misalnya COM components).

Dengan pergeseran ini, jelas terlihat bahwa Microsoft ingin mendorong developer VB untuk lebih disiplin dalam desain program. Dari semua pintu terbuka (VB3) menjadi default pintu terkunci (VB4 ke atas). Kalau mau berbagi prosedur, developer harus dengan sadar menuliskan Public.

Kenapa Microsoft Melakukan Ini?
  1. Modularitas & Maintainability
    – VB sudah dipakai untuk aplikasi besar (ERP, database enterprise). Supaya code lebih terstruktur, default akses diperketat.
  2. Transisi ke OOP
    – VB4 mulai mendukung class module. Jadi prosedur diperlakukan seperti method dalam object → default-nya Private.
  3. Compatibility
    – Di VB3 banyak developer “secara tidak sengaja” mengekspos procedure. Di VB4 mereka “dibatasi” → kalau mau tetap Public, harus ditulis eksplisit.

Filosofi Lucu
  • VB3: “Semua boleh masuk rumah saya, pintu selalu terbuka.”
  • VB4: “Default pintu tertutup, kalau mau masuk tulis ‘Public’ dulu.” 🤣

Friday, October 15, 1999

Litani Kabel: Hymn of the Server Room

Di ruang server yang dingin, lampu indikator berkedip bagai doa. Chief ICT berdiri sejenak—semi pahlawan, semi penjaga katedral digital— menyimak dengung UPS dan desah kipas. Inilah litani kabel: tempat humor menjadi baju zirah, dan ketekunan menjadi pedang.


Puisi Kabel #1 — Doa Backup Harian

Kabel kusut bukan masalah,
yang penting server tetap menyala.
Vendor ribut biarlah sudah,
backup harianlah doa kita.

Ekstra-epik: Di atas altar rack, Chief mengangkat kitab cadangan— bukan gulungan naskah, melainkan bayangan data yang siap dibangkitkan. “Selama backup hidup,” katanya lirih, “kekalahan hanyalah jeda, bukan akhir.”


Puisi Kabel #2 — Misteri Printer & Bintang Switch

Firewall berdiri bak altar,
switch berkelip bagaikan bintang besar.
User bertanya “Pak, printernya kenapa?”
Chief tersenyum: “itu misteri semesta.” 😅

Ekstra-heroik: Tawa ringan jadi jubah anti-stres. Di balik log yang panjang, Chief membaca pertanda, bukan sekadar error code, melainkan kosmologi kecil antara port, driver, dan anugerah sabar.


Puisi Kabel #3 — Senin, Ujian Para Penjaga

UPS berdengung lirih,
router berdoa dalam sunyi.
ICT hidup bukan untuk mudah,
tapi untuk tetap waras di hari Senin 🤣.

Semi-gothic: Senin selalu datang sebagai bayang-bayang panjang. Namun selama UPS bernapas dan router berdoa, para penjaga jaringan akan menyalakan fajar dengan secangkir humor dan konfigurasi yang tepat.


Refleksi Penjaga Katedral Digital

Di dunia tempat kabel menjadi urat nadi dan paket data menjadi doa, keperkasaan bukanlah teriakan—melainkan konsistensi. Humor adalah perisai, disiplin adalah pedang, dan backup adalah janji kebangkitan. Maka melangkahlah, Chief ICT: semi pahlawan, semi imam, sepenuhnya manusia—penjaga uptime dalam katedral bernama jaringan.


Sunday, October 10, 1999

Boiler Control Fundamentals


In power generation and industrial facilities, the boiler is the heart that produces steam—and its efficiency and safety depend entirely on an intelligent control system. Regardless of the fuel type or the control technology, there are six fundamental control functions that must be managed in a balanced-draft boiler: Furnace Draft, Drum Level, Feed Water, Fuel, Combustion Air, and Steam Temperature.


The Role of an I&C Engineer in Boiler Control

An Instrumentation and Control (I&C) Engineer must master these principles to keep the boiler safe, efficient, and responsive to steam load demand. An I&C Engineer is expected to:

1) Describe the major boiler components and their functions.
2) Discuss and analyze the six major control variables.
3) Explain subsystem interactions and control loop configurations.
4) Understand and mitigate the transient phenomena called “Swell” and “Shrink.”


1. Fundamental Boiler Components

Furnace: The combustion chamber where fuel is burned. The key control variable is furnace draft (internal pressure).

Burners: Where fuel meets combustion air; control centers on the fuel-to-air ratio.

Boiler Drum: The upper vessel where water becomes steam and is separated from water; the key variable is drum level.

Water Walls: Tube circuits surrounding the furnace that absorb radiant heat and contain water.

Superheater: Tube banks that further heat saturated steam to produce superheated steam, raising final steam temperature.

Economizer: Heat exchanger that preheats feedwater using exhaust gas, improving efficiency.


2. Main Control Variables

A. Furnace Draft Control

This is the most critical control for safety. Furnace draft refers to the air pressure inside the furnace.

Objective: Maintain slightly negative pressure (e.g., −0.1 in. H2O).
Why: If too positive, hot flue gas can leak and harm equipment/personnel. If too negative, excess cold air is drawn in and reduces efficiency.
Typical loop: PID manipulating the ID fan damper (with FD fan supplying air).

B. Drum Level Control

The drum water level must be kept within a very tight band.

Too low: Water walls overheat and may rupture.
Too high: Water carryover damages the superheater and turbine.

C. Feedwater Control

The feedwater subsystem introduces water to the drum to stabilize level. Common configurations:

Single-Element: Feedback on drum level only—adequate for small, steady-load boilers.

Two-Element: Drum level and steam flow as feedback; steam flow provides feedforward to anticipate level change (mitigates swell/shrink).

Three-Element: Drum level, steam flow, and feedwater flow—the industry standard for large units to enforce mass balance (inflow = outflow).

D. Steam Temperature Control

Superheated steam boosts cycle efficiency but must stay below turbine material limits.

Controller approach: Cascade control with a desuperheater/attemperator that sprays demineralized water into the steam line; main steam temperature trims the spray-water flow setpoint.

E. Fuel and Air Control

The combustion system tracks process/turbine steam demand.

Steam demand signal: Main steam header pressure. A pressure drop implies higher demand → increase fuel and air.
Air-to-fuel ratio: Maintain sufficient excess air for complete combustion, but not too much (which cools the furnace). Flue-gas O2 analyzers supervise ratio. Implementation commonly uses parallel cascade (lead-lag) so air leads/matches fuel for safety.


3. Transient Phenomena: Swell & Shrink

A. Boiler Swell

Cause: Sudden rise in steam demand (e.g., turbine valve opens).
Effect: Drum pressure drops; steam bubbles expand in the water.
Result: Apparent drum level rises (swells) even though actual water mass decreases.

B. Boiler Shrink

Cause: Sudden drop in steam demand or a surge of cold feedwater.
Effect: Drum pressure rises; steam bubbles collapse.
Result: Apparent drum level falls (shrinks) while actual mass may be unchanged.

Operator insight: During swell/shrink, the level transmitter can mislead. Two- and three-element control use steam flow as a feedforward signal to pre-compensate pressure effects before the level loop reacts incorrectly.


Epilogue

A well-designed boiler control system embodies disciplined engineering—logic, feedback, anticipation, and safety—harmonized to keep fire under control and steam within order. In skilled I&C hands, these loops are not just circuits and valves; they are the heartbeat of industry.